Status Report of the LCC Detector R&D task force

Maxim Titov (CEA Saclay)
Jan Strube (Tohoku University)
Charge

The detector R&D liaison ensures productive communication between the LCC Physics and Detectors Executive Board and detector R&D groups. The liaison is a member of the Executive Board and communicates relevant information from the Executive Board to detector R&D groups and vice versa.

The liaison is in contact with all detector R&D groups relevant to linear colliders to keep track of the overall detector R&D efforts conducted or planned for linear colliders and to periodically compile summaries of the efforts.
The ILC Detectors

Purpose:
● Precision measurements of Higgs properties
● Discovery potential for (and precision measurements of) new phenomena

Requirements:
● Precision instruments that are optimized for the ILC beam structure
● Choice of PFA paradigm requires an integrated concept. All parts play together to achieve the best performance.
Fields of detector R&D

In spite of tight budgets, Linear Collider R&D is still an active field.

Marcel Demarteau showed many beautiful results this morning.
The Plan

Get an overview over the linear collider detector R&D efforts.

Purpose:
• Publicise the technology. Make areas of overlap obvious without pointing them out.
• Provide a showcase for the technology, not individual institutes. Manpower and effort is explicitly not mentioned in the report.
• Provide an entry point for new groups.
Technical Details

Contributions come in many formats:
 o LaTeX, Word, PDF, emailed text, …
 o With varying quality of references

Report is being written in LaTeX. Currently 60+ pages + 7 pages references. Goal was <70 pages. We might get there. All references are verified and hyperlinked.
Collaborations

- RPC DHCAL
- Scintillator ECAL
- CMOS MAPS
- Silicon ECAL
- Silicon ECAL (SiD)
- LCTPC
- DEPFET
- SDHCAL
- GEM DHCAL
- FCAL
- CLICPix
- ChronoPixel
- TPAC
- Calice
- KPIX
- VIP
- RPC Muon
- Dual Readout
- FPCCD
- Scintillator HCAL

NB: incomplete list. For illustration purposes only.
Feedback

> 30 individuals contacted
→ overlap in technologies, ensure maximum coverage of all technologies

covering 20 Technologies

Responses ranged from pointers to 100+ page documents, over inline text and bullet points to 18+ dedicated pages.
Five Questions

1. **Introduction**
 Brief overview over the technology

2. **Recent Milestones (Since DBD / CDR)**
 To avoid receiving historical data and get an idea of the activity of the group

3. **Engineering challenges**
 for putting the technology into a real-world LC detector

4. **Future Plans**

5. **Applications Outside of LC**
Overview over the responses

List of responses was rather variable. From text inline with an email to 17 page document

Some chapters are not in good shape.
We need some additional help if we are to meet our goal of \(~70\) pages. If your chapter is not shown in green, please talk to us.

- All is good. Response received within time and expected scope
- More work needed. Supplementary material requested or additional editing needed from your side.
- Contribution has not been received within time or with the requested scope.
HCal Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Comments</th>
<th>Response acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDHCAL</td>
<td>needs update</td>
<td>yes, follow-up questions</td>
</tr>
<tr>
<td>Scintillator HCAL</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>RPC DHCAL</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>GEM DHCAL</td>
<td>Issues being addressed</td>
<td></td>
</tr>
<tr>
<td>Dual Readout</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>
ECal Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Response received</th>
<th>Response acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scintillator ECAL</td>
<td>Being improved</td>
<td></td>
</tr>
<tr>
<td>Si-W ECAL (ILD)</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Si-W ECAL (SiD)</td>
<td>Partly missing</td>
<td></td>
</tr>
<tr>
<td>TPAC MAPS</td>
<td>From CALICE report</td>
<td>(no active contact)</td>
</tr>
<tr>
<td>FCAL</td>
<td>Needs editing</td>
<td></td>
</tr>
</tbody>
</table>
Tracking Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Comment</th>
<th>Status acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC</td>
<td>Needs major editing</td>
<td></td>
</tr>
<tr>
<td>KPIX</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>SCIPP</td>
<td>Editing needed</td>
<td></td>
</tr>
</tbody>
</table>
Vertex Pixel Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Comment</th>
<th>Status acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPFET</td>
<td>Waiting for update</td>
<td></td>
</tr>
<tr>
<td>CMOS MAPS</td>
<td>Partly missing</td>
<td></td>
</tr>
<tr>
<td>FPCCD</td>
<td>OK</td>
<td>[Green]</td>
</tr>
<tr>
<td>SOI</td>
<td>OK</td>
<td>[Green]</td>
</tr>
<tr>
<td>VIP</td>
<td>OK</td>
<td>[Green]</td>
</tr>
<tr>
<td>CLICPix</td>
<td>Bullet points only</td>
<td></td>
</tr>
<tr>
<td>ChronoPixel</td>
<td>OK</td>
<td>[Green]</td>
</tr>
</tbody>
</table>
Current Status

Contents

1 Vertex Detector R&D .. 5
 1.1 ChronoPixel ... 5
 1.2 Recent Milestones 6
 1.3 Engineering Challenges 6
 1.4 Main directions of the R&D for the next 5 years 6
 1.5 Applications Outside of Linear Colliders 7
 1.6 CMOS .. 7
 1.6.1 Collaborating Institutions 7
 1.6.2 Introduction 7
 1.6.3 Recent Milestones 7
 1.6.4 Engineering Challenges 7
 1.6.5 Future Plans 7
 1.7 Applications Outside of Linear Colliders 7
 1.7.1 Introduction 7
 1.7.2 Recent Milestones 7
 1.7.3 Engineering Challenges 7

2 Tracking Detectors .. 10
 2.1 SCIP Tracking R&D 10
 2.1.1 Introduction 10
 2.1.2 Recent Milestones 10
 2.1.3 Engineering Challenges 10
 2.1.4 Future Plans 10
 2.1.5 Applications Outside of Linear Colliders 10
 2.2 KON .. 21
 2.2.1 Introduction 21
 2.2.2 Recent Milestones 21
 2.2.3 Engineering Challenges 21
 2.2.4 Future Plans 21
 2.2.5 Applications Outside of Linear Colliders 21
 2.3 LHCb Tracker ... 25
 2.3.1 Introduction 25
 2.3.2 Recent Milestones 25
 2.3.3 Engineering Challenges 25
 2.3.4 Future Plans 25
 2.3.5 Applications Outside of Linear Colliders 25

3 Calorimeter R&D ... 28
 3.1 Scintillators .. 28
 3.1.1 Introduction 28
 3.1.2 Recent Milestones 28
 3.1.3 Engineering Challenges 28
 3.1.4 Future Plans 28
 3.1.5 Applications Outside of Linear Colliders 28
 3.2 Silicon-Tungsten ECAL in ILD 29
 3.2.1 Introduction 29
 3.2.2 Recent Milestones 29
 3.2.3 Plans of the near future 29
 3.2.4 Engineering Challenges 29
 3.2.5 Applications Outside of Linear Colliders 29
 3.3 Silicon Tungsten SD ECAL 32
 3.3.1 Introduction 32
 3.3.2 Recent Milestones 32
 3.3.3 Plans of the near future 32
 3.3.4 Engineering Challenges 32
 3.3.5 Applications Outside of Linear Colliders 32

3.4 DECAL .. 36
 3.4.1 Test Beams in 2019 36
 3.4.2 Pixel efficiency results 36
 3.4.3 Future plans .. 36
 3.5 Resistive Plate Chambers 38
 3.5.1 Detectors in DEPFET 38
 3.5.2 Application Outside of Linear Colliders 38
 3.5.3 Future Plans 38
 3.6 DECAL .. 40
 3.6.1 Introduction 40
 3.6.2 Recent Milestones 40
 3.6.3 Engineering Challenges 40
 3.6.4 Future Plans 40
 3.6.5 Applications Outside of Linear Colliders 40
 3.7 ECAL .. 42
 3.7.1 Introduction 42
 3.7.2 Mechanical Concept 42
 3.7.3 Recent Milestones 42
 3.7.4 Engineering Challenges 42
 3.7.5 Future Plans 42
 3.7.6 Test-beam Results 44
 3.7.7 Radiation Damage Studies 44
 3.7.8 Technological Prototype 44
 3.8 Analog FCAL ... 48
 3.8.1 Introduction 48
 3.8.2 Recent Milestones 48
 3.8.3 Past and present R&D: technology 48
 3.8.4 Summary ... 48
 3.8.5 Engineering Challenges 48
 3.8.6 Future Plans 48
 3.9 SOFC .. 49
 3.9.1 Introduction 49
 3.9.2 Hadrorn calorimeter design 49
 3.9.3 Recent Milestones 49
 3.9.4 Engineering Challenges 49
 3.9.5 Detector R&D plans for the coming years 49
 3.9.6 Applications Outside of Linear Colliders 49
 3.10 DualReadout ... 50
 3.10.1 Introduction 50
 3.10.2 Recent Milestones 50
 3.10.3 Engineering Challenges 50
 3.10.4 Future Plans 50
 3.10.5 Applications Outside of Linear Colliders 50
 3.10.6 References ... 51

Preliminary
Suggestion to the Community

The current layout makes it still difficult to get a quick overview.

We are working on a summary table listing collaborating institutions, milestones, future plans. This will become the main part of an executive summary for each section (not each technology).

Should this be expanded with pointers to areas of possible contributions by newcomers (provided by the groups, not by us?)
Software

Suggestion at the SiD meeting to add software.

This can have a huge benefit: Oftentimes managers don’t know the status of the software world and are convinced by their engineers that they must start an effort from scratch. Documenting the capabilities we have developed properly might increase adoption. Your input is welcome.
Software examples

We have pioneered some very useful technology:
LCIO
SLIC
DD4HEP
LCFIPlus
PandoraPFA

Would be useful outside of the ILC world.
_summary

- Compiling an overview of the field of detector R&D is a lot of work and cannot happen without the help of the community.
- If your contribution was not shown in green, we would like to talk to you.
- The overview document has been mentioned several times in the ICHEP Detector R&D talk. This is an indication that it’s seen as useful from outside the LC world.
- Thank you for your help with this effort so far. We will continue to work hard to provide a first draft around the time of LCWS.